Unit 4 Study Guide

Convert the equation to logarithmic form: $42=x^{3}$

Convert the equation into exponential form: $\log _{64} 16=\frac{2}{3}$

Evaluate:

$\log _{64} 8$	$\log _{16} \frac{1}{2}$	$\log _{17} 17$	$\log _{4}-8$
$\log _{3} \frac{1}{81}$	$9^{\log _{9} 81}$	$\log _{5} 27$	$e^{\ln 6}$
$\ln \cdot e^{32}$	$\frac{\ln \cdot e^{6}}{18}$	$3.5 e^{4}$	e^{5}

Condense:

$\log _{3} x+\log _{3} x$	$2 \log _{4} x+\log _{4}(x+2)$	$\log _{5}(x+1)+\log _{3}(x+2)$
$\log \left(x^{2}-4\right)-\log (x+2)$	$\ln 4 x+3 \ln x$	$3 \ln x-2 \ln x$

Expand:

$\log _{2} 5 x^{2}$	$\log \frac{5 x}{y}$	$\log \sqrt{\frac{m}{n}}$
$\log 2 x^{3} y$	$\ln x^{3} y^{2}$	$\ln \sqrt[3]{m n}$

Solve the following Exponential Equations:

$4^{3}=2^{x}$	$3^{5 x-6}=81$	$3^{x-11}=7$

Solve the following Logarithmic Equations:

$\log _{3}(4 x-3)=4$	$\log (2 x+6)=\log \left(2 x^{2}+7 x-6\right)$	$\log x-\log 9=\log 18$
$\log (x+3)+\log (x+4)=\log x+\log (x+8)$	$\log (3 x+7)=3$	

Solve the following Equations:

$4 e^{x}-3=6$	$e^{3} \cdot e^{x}=15$
$\ln (3 x+4)=9$	$\ln 4 x+\ln 2 x=8$

Exponential Growth/Decay

1.) Determine if the following functions are grow or decay.
2.) Determine the growth or decay factor as a percent.

$f(x)=6(1.04)^{x}$	$f(x)=11(.86)^{x}$

In 2010, there was a population 2165 mice and they are decreasing at a rate of 17% per year.
a. Write an exponential function for this model.
b. Predict how many mice there will be this year.
c. When will there be 1200 mice?

Iron-59 is used in medicine to diagnose blood circulation disorders. The half-life of iron-59 is 44.5 days.
a. Write an exponential function that models the decay of this substance?
b. How much of a 2.0 mg sample will remain after 133.5 days?
c. How long will it take to have a 2.5 mg of iron-59 left over?

You saved \$2500 from your summer job. Which option yields more money? What is the positive difference between the 2 options?

Option 1:
A traditional savings account at 3.5% interest compounded monthly for 5 years.

Find the inverse of the following function:
$f(x)=\log _{5}(x-2)+4$
$f(x)=3^{x+3}-5$

Graph:

