Math 3 – Exponent/Logarithm Review Sheet

Without graphing, determine whether each equation represents exponential growth or exponential decay. Then find the rate of growth or decay and the initial amount (y-intercept).

1.
$$y = 0.5(1.67)^{x}$$
 2. $y = 1.14^{x}$ **3.** $y = 2\left(\frac{9}{10}\right)^{x}$ **4.** $y = 4.1(0.72)^{x}$

- 5. Mr. Andersen put \$1000 into an account that earns 4.5% annual interest. The interest is compounded annually and there are no withdrawals. How much money will be in the account at the end of 30 years?
- 6. A manufacturer bought a new rolling press for \$48,000. It has depreciated in value at an annual rate of 15%. What is its value 5 years after purchase? Round to the nearest hundred dollars.
- 7. You place \$900 in an investment account that earns 6% interest compounded continuously. Find the balance after 5 years.

Graph each function as a transformation of its parent function. Identify key point, asymptote, domain, and range.

8 . <i>y</i> = 3 [×] −1	9. $y = (2)^{x-2} + 2$	10 . y = log 4 (x + 1)	
Key point:	Key point:	Key point:	
Asymptote:	Asymptote:	Asymptote:	
Domain:	Domain:	Domain:	
Range:	Range:	Range:	

Write each equation in log	jarithmic form.	
11. 100 = 10 ²	12. 9 ³ = 729	13. 64 = 4 ³
Evaluate each logarithm.		
14. log 1000	15. log₄ 256	16. log ₂₇ 9
Solve each equation.		x
17. log ₃ (x + 1) = 4		18. $e^{\overline{4}} = 5$
19. log x + log 2 = 5		20. ln x – ln 4 = 7
21. $6^{3x+2} = 18$		22. $e^{3x}e^{2x} = 20$
24. $5e^{2x} - 1 = 9$		25 . log 3 + log x = log 12

26. Radium has a half-life of 1660 years. If the initial amount of radium is 200 grams, how much will remain after 500 years?

Simplify.

27. ln e ⁶	28. $e^{\ln 3}$	29. log ₂ 2	30 . 3 ^{log} 38
------------------------------	------------------------	-------------------------------	---------------------------------