Simplifying: Cancel terms
$\frac{10 x^{2} y}{\left.\begin{array}{c}\text { like factors } \\ \downarrow\end{array}\right)}=\frac{2 \cdot 5 \cdot \downarrow \cdot y \cdot y}{3 \cdot \bar{y} \cdot x \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y}=\frac{2}{3 x^{3} y}$

Simplifying with multiplication: Cancel terms vertically or diagonally
$\frac{4 x y^{2}}{3 y} \cdot \frac{2 x}{4 y}=$
$=\frac{4 x y^{2} \cdot 2 x}{3 y \cdot 4 y}=\frac{2 x^{2} y^{2}}{3 y^{2}}=\frac{2 x^{2}}{3}$
Multiplying: FACTOR and cancel whole factors
$\frac{4 x+8}{x^{2}-25} \cdot \frac{x-5}{5 x+10}$
$\frac{4(x+2)}{(x+5)(x-5)} \cdot \frac{x-5}{5(x+2)}=\frac{4}{5(x+5)}$

Adding: Factor, get common denominators, simplify numerator (leave denominator in factored form)
$\frac{x-5}{x^{2}-9}+\frac{x+12}{x+3}=\frac{x-5}{(x+3)(x-3)}+\frac{x+12}{x+3} \cdot \frac{x-3}{x-3}$ $=\frac{(x-5)+\left(x^{2}+9 x-36\right)}{(x+3)(x-3)}=\frac{x-5+x^{2}+9 x-36}{x^{2}-9}$

$$
=x^{2}+10 x-41
$$

Dividing: Keep Change Flip, FACTOR, and cancel whole factors

$$
\begin{aligned}
\frac{\frac{x+4}{2 x-6}}{\frac{3 x+12}{4 x-12}} & =\frac{x+4}{2 x-6} \cdot \frac{4 x-12}{3 x+12}= \\
& =\frac{x+4}{2(x-3)} \cdot \frac{4(x-3)}{3(x+4)}=\frac{1}{2} \cdot \frac{4}{3}=\frac{2}{3}
\end{aligned}
$$

Subtracting: Factor, get common denominators, foil negative, simplify numerator (leave denominator in factored form)
$\frac{x+2}{x-1}-\frac{12}{x+6}=\frac{(x+2)(x+6)}{(x-1)(x+6)}-\frac{12(x-1)}{(x-1)(x+6)}$ $=\frac{x^{2}+8 x+12}{(x-1)(x+6)}-\frac{12 x-12}{(x-1)(x+6)}$
$=\frac{x^{2}+8 x+12-(12 x-12)}{(x-1)(x+6)}$
$=\frac{x^{2}+8 x+12-12 x+12}{(x-1)(x+6)}$

$$
=\frac{x^{2}-4 x+24}{(x-1)(x+6)}
$$

Solving: Factor, get common denominators, cross through denominators, solve what is left on top, DON'T FORGET EXCLUDED VALUES

$$
\begin{aligned}
& \frac{x}{x+3}=\frac{8}{x+6} \\
& \frac{x(x+6)}{(x+3)(x+6)}=\frac{8(x+3)}{(x+6)(x+3)} \\
& x^{2}+6 x=8 x+24 \\
& x^{2}-2 x-24=0 \\
& (x-6)(x+4)=0 \\
& x=6 ; \quad x=-4
\end{aligned}
$$

Word Problems: Time tog,/Time alone + Time tog./Time alone $=1$
$\frac{x}{6}+\frac{x}{4}=1$
$(12)\left(\frac{x}{6}\right)+(12)\left(\frac{x}{4}\right)=(12)(1)$
$2 x+3 x=12$
$5 x=12$
$x=\frac{12}{5}=2 \frac{2}{5}$ hours
Graphing:
Vertical Asymptote:

Complex Fractions: (HONORS) Get
Vertical Asymptote:
common denominators on top and bottom, Simplify numerator and denominator
Point of Discontinuity or \qquad :

Horizontal Asymptote:

Numerator>Denominator: \qquad
Numerator<Denominator: \qquad
Numerator=Denominator: \qquad
Domain:
All real \#s except \qquad \& \qquad

Range:

All real \#s except separately, Keep Change Flip, cancel

$$
\begin{aligned}
& \frac{1+\frac{1}{x}}{1-\frac{1}{x}}=\frac{\frac{x+1}{x}}{\frac{x-1}{x}} \\
= & \frac{x(x+1)}{x(x-1)}=\frac{x+1}{x-1}
\end{aligned}
$$

1. What is the excluded value? $\frac{x-1}{2 x+6}$	2. Simplify: $\frac{a^{3}-a}{a^{2}-1}$	3. Multiply and simplify: $\frac{32 x^{2}}{y^{4}} \cdot \frac{5 y^{3}}{8 x^{2}}$	4. Simplify and state excluded values: $\frac{2 x+8}{x^{2}-2 x-8}$
5. Simplify: $\frac{-4 x+8}{2-x}$	6. Divide: $\frac{x^{2}+x-6}{x^{2}-6 x+8} \div \frac{x^{2}-x-12}{x^{2}-16}$	7. Divide: $\frac{a-b}{9 a+9} \div \frac{a^{2}-b^{2}}{9 a^{2}+18 a+9}$	8. Subtract: $\frac{1}{9 x^{2}}-\frac{8}{6 x^{6}}$
9. Subtract: $\frac{2 x+2}{x-5}-\frac{x+7}{x-5}$	10. Add: $\frac{5 n+5}{5 n^{2}+35 n-40}+\frac{7 n}{3 n}$	11. Simplify the complex fraction (HONORS) $\frac{\frac{16}{m-3}-\frac{4}{m-4}}{\frac{16}{m^{2}}-\frac{m-4}{m-3}}$	12. Express in lowest terms: $\frac{2 x}{x-4}-\frac{2 x}{x+4}+\frac{64}{x^{2}-16}$
13. Solve: $\frac{n+5}{n+8}=1+\frac{6}{n+1}$	14. Chad can paint the room in $2 h$, Cassie can paint the room in 3 h, How long will it take them to paint the room together?	15. State the D, R, PoD, VA, and HA: $\frac{x-4}{-4 x-16}$	16. State the D, R, PoD, VA, and HA: $\frac{x^{3}-9 x}{3 x^{2}-6 x-9}$

