Solving Absolute Value Equations

Solving Absolute Value Inequalities

Evaluating a Piecewise Function

Function notation $f(\#)$ means find y when x is that \#. To do this, you will either...
A) substitute x into the function's algebraic expression
B) determine the y coordinate form the plotted ordered pair on the graph at that x.

Example:

$f(x)= \begin{cases}-4 x+3 & \text { if } x<3 \sqrt{x} \\ -x^{3} & \text { if } 3 \leq x \leq 8 x x v \\ 3 x^{2}+1 & \text { if } x>8 x(x\end{cases}$ $\begin{cases}-x^{3} & \text { if } 3 \leq 3 \leq 8 x x \\ 3 x^{2}+1 & \text { if } x>8 x \vee x\end{cases}$
a.) $f(-5)$
b.) $f(12)$
c.) $f(4)$
$-4(-5)+3=23$
$3(12)^{2}+1=433$
$-4^{3}=-64$

Example: Provide the equation of the provided graph...

Observations:
Absolute value function, Right 1, Down 4, Stretched such that slope on right is 2 .

Answer:
$F(x)=2|x-1|-4$

Transforming a Function

For the following functions:
$y=a(x-h)^{2}+k$
$y=a|x-h|+k$
$y=a(b)^{x-h}+k$
$y=a \log _{b}(x-h)+k$
$y=a \sin \mathrm{~b}(x-h)+k$
$y=a \cos \mathrm{~b}(x-h)+k$
the following rules apply:
a is negative ...reflect over x-axis
\mid a $\mid>0$...vertical stretch by factor a
$h>0$...shift right h units $h<0 \ldots$..shift left h units k>0...shift up k units K<0....shift down k units

End Behavior

A function's end behavior (arrow directions) can be identified based on the leading coefficient and degree of the polynomial.
Degree is even and Coefficient is positive... Up\&Up $\quad \rightarrow$ As $x \rightarrow-\infty, f(x) \rightarrow+\infty$. As $x \rightarrow+\infty, f(x) \rightarrow+\infty$.
Degree is even and Coefficient is negative...Down\&Down
\rightarrow As $x \rightarrow-\infty, f(x) \rightarrow-\infty$. As $x \rightarrow+\infty, f(x) \rightarrow-\infty$.
\rightarrow As $x \rightarrow-\infty, f(x) \rightarrow-\infty$. As $x \rightarrow+\infty, f(x) \rightarrow+\infty$.
\rightarrow As $\mathrm{x} \rightarrow-\infty, \mathrm{f}(\mathrm{x}) \rightarrow+\infty$. As $\mathrm{x} \rightarrow+\infty, \mathrm{f}(\mathrm{x}) \rightarrow-\infty$.

Example:
$f(x)=2 x^{4}-3 x^{3}+5 x^{2}-7 x+1$
$f(x)=-2 x^{4}-3 x^{3}+5 x^{2}-7 x+1$
$f(x)=3 x^{3}+5 x^{2}-7 x+1$
$f(x)=-3 x^{3}+5 x^{2}-7 x+1$

Inverse Function - a reflection of the function over $y=x$

1. Switch x and $y(o r f(x))$.
2. Solve for y.
3. Replace y with inverse notation: $f^{-1}(x)$

Note: A relation is one-to-one (1:1) if both the original relation and its inverses are functions.
(should pass both the vertical and horizontal line test)

Example:

$$
f(x)=\frac{x-7}{x}, x \neq 0
$$

$$
\begin{aligned}
& y=\frac{x-7}{x} \\
& x=\frac{y-7}{y} \\
& x y=y-7 \\
& x y-y=-7 \\
& y(x-1)=-7 \\
& y=\frac{-7}{x-1} \text { or } \quad y=\frac{7}{1-x}
\end{aligned}
$$

1. $\|4 x+4\|=28$	2. $\|x+2\|=-8$	3. $-2\|-2 p-8\| \geq-56$	4. $-1+\|3-2 x\|<14$
5. $\begin{aligned} & f(x)=\left\{\begin{array}{c} -2\|x+1\|, x \leq 1 \\ 3,1<x<3 \\ 6-2 x, x \geq 3 \end{array}\right. \\ & f(10)= \\ & f(0)= \end{aligned}$	6. $\begin{aligned} & g(x)=\left\{\begin{array}{c} -2 x-1, x \leq 1 \\ -x^{2}+3 x-5, x>1 \end{array}\right. \\ & g(-2)= \\ & g(3)= \end{aligned}$	7. $f(-3)=$	 8. $f(0)=$
9. Describe the transformations of ... $y=-2(x+3)^{2}+5$	10. Describe the transformations of ... $f(x)=2^{x+1}-3$	11. Write the equation of the graph...	12. Write the function that would have the following transformations from $f(x)=\sqrt{x}$ compress vertically by a factor of 3 reflect across the x -axis translate right 2 units translate down 3 units
Use the graph from number 13. Domain: 14. Increasing Interval: 15. Relative Minimum:	and 8 to describe the follow Range: Decreasing Intervat Absolute Maximum:		16. Describe the end behavior of ... $y=-\frac{4}{3} x^{3}+17 x^{2}-5 x+2$
17. Find the inverse of... $f(d)=3(d+9)^{2}$	18. Find the inverse of ... $y=\log _{6}(4 x+4)$	19. Find $f^{-1}(-4)$ if $f(x)=\frac{x-5}{2 x+1} .$	20. Graph the inverse for each relation below (put your answer on the same graph).

