Nam	e:		NC Math 3 Unit:	Day:
Objective: Divide Polynomials using Synthetic Division and explore the Remainder Theorem.				
	1) Use long division to divide:	2)	Use your calculator to evaluate P(-3/2	2) for the
	$(2x^2 - 17x - 38) \div (2x + 3)$		function $P(x) = 2x^2 - 17x - 38$.	
			P(3/2) =	
ion			F (-3/2) -	
lat				
ou c				
ЪС				
	Steps to Synthetic Division:			
	 Make sure the polynomial is in standard form. Plug 0 place holders in for any missing terms 			
	3. Set the binomial equal to zero solve, and put	the	at number outside (left) of the synthetic	· hox
	 Divide using synthetic methods (see examples). 			
S:	5. Rewrite the ending numbers as a Polynomial starting from right to left:			
ote	Remainder at the end, loose number, x-term, x^2 -term, and so on.			
Z	Determine whether a binomial is a factor of the polynomial:			
	Run through Synthetic division. If the remainder is 0, it is a factor of the polynomial. If the			
	Remainder Theorem:			
	Set the binomial equal to zero, plug that number in for every x, and the output you get is the			
	remainder.			
	Use Synthetic division to divide the polynomials.		-	
	1. $(x^3 + 3x^2 - x - 3) \div (x - 1)$ 2.	(2	$(^3 + 27) \div (x + 3)$	
	3. Use Synthetic and then factor to find the 4.	Ar	e the following binomials factors of	
		()	$x^{2} + 4x^{4} + x - 6)_{2}$	
	$f(r) = 4r^3 = 12r^2 = r + 2(r - 2)$	X	:+1	
	f(x) = 4x - 12x - x + 3, (x - 3)			
s:				
ole		х	+3	
Ξ				
Ň				
	E. The remainder where dividing where 0.0.1 Over the	L		
	5. The remainder when dividing $x^3 + 2x^2 + 3x + k$ by $(x+1)$ is 2. What is the value of k^2			
	6. Explain the connection between questions 1 and 2 from the foundations section of foday's notes. (Hint: discuss Remainder Theorem).			
	(nini. discuss kernainder meorem!)			

Use either method to divide and factor.
(
$$x^3 - 4x^2 + x + 6$$
) + ($x - 2$)
($x^3 - 4x$) + ($x + 2$)
Use either method to divide. Is if a factor of the polynomial?
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
($x^3 - 4x$) + ($x + 2$)
(x^3