Name: \qquad Date: \qquad

1. Write the division statement for $\left(a^{4}+4 a^{3}-a^{2}-10 a-6\right) \div(a+3)$.
A. $a^{4}+a^{3}-4 a^{2}+2 a-12$
B. $\mathrm{a}^{3}+\mathrm{a}^{2}-4 \mathrm{a}+2+\frac{-12}{x+3}$
C. $a^{3}+a^{2}-4 a+2$
D. $a^{4}+7 a^{3}+20 a^{2}+50 a+144$
2. Express $\frac{5}{1-2 i}$ in the form $a+b i$.
A. $-\frac{5}{3}+\frac{10 i}{3}$
B. $5+2 i$
C. $1+2 i$
D. $5+10 i$
3. Simplify: $\frac{x-3}{x-2}+\frac{5}{x+2}$
A. $\frac{x^{2}+4 x-16}{x^{2}-4}$
B. $\frac{x-15}{2 x}$
C. $\frac{5 x-15}{x^{2}-4}$
D. $\frac{x+2}{x^{2}-4}$
4. What is the complete factorization of $4 x^{6}-13 x^{4}+9 x^{2}$?
A. $x^{2}\left(4 x^{2}-9\right)(x+1)(x-1)$
B. $x^{2}(2 x+3)(2 x-3)\left(x^{2}-1\right)$
C. $x^{2}(2 x+3)(2 x-3)(x+1)(x-1)$
D. $x^{2}(2 x+3)(2 x+3)(x+1)(x+1)$
5. If $4 x^{2}-3 x-2=0$, then $x=$?
A. $\frac{-3 \pm \sqrt{41}}{8}$
B. $\frac{3 \pm \sqrt{41}}{8}$
C. $\frac{4 \pm \sqrt{23}}{6}$
D. $\frac{4 \pm \sqrt{23}}{3}$
6. If point (a, b) lies on the graph $y=f(x)$, the graph $y=f^{-1}(x)$ must contain point
A. (b, a)
B. $(a, 0)$
C. $(0, b)$
D. $(-a,-b)$
7. The vertex of the parabola $y=x^{2}+8 x+10$ lies in Quadrant
A. I
B. II
C. III
D. IV
8. When factored completely, $27 y^{3}-64$ is equivalent to:
A. $(3 y-4)\left(9 y^{2}+12 y+16\right)$
B. $(3 y+4)\left(9 y^{2}+24 y+16\right)$
C. $(3 y-4)\left(3 y^{2}+12 y+16\right)$
D. $(3 y-4)\left(9 y^{2}-24 y+16\right)$
9. What is the domain of the function?

$$
f(x)=\frac{8}{x+3}-2
$$

A. $(-\infty, 2) \mathrm{U}(2, \infty)$
B. $(-\infty, \infty)$
C. $(-\infty, 3) \mathrm{U}(3, \infty)$
D. $(-\infty,-3) \mathrm{U}(-3, \infty)$
10. Which equation has roots with the sum equal to $\frac{9}{4}$ and the product equal to $\frac{3}{4}$?
A. $4 x^{2}+9 x+3=0$
B. $4 x^{2}+9 x-3=0$
C. $4 x^{2}-9 x+3=0$
D. $4 x^{2}-9 x-3=0$
11. Which function corresponds to the ordered pairs in the table?

x	y
-5	-15
-3	-9
-1	-3
2	6

A. $f(x)=-3 x^{2}$
B. $f(x)=3 x$
C. $f(x)=-3 x-1$
D. $f(x)=3 x^{2}-1$
12. A polynomial, $P(x)$, has real coefficients and also has zeros at $1,1+i$, and $2-i$. Then this polynomial must have a degree of:
A. at least 5
B. exactly 3
C. at least 6
D. none of these
13. What is the end behavior of the following polynomial, $f(x)=-3 x^{3}+2 x-1$?
A. The left-hand tail rises and the right-hand tail falls.
B. The left-hand and right-hand tails both fall.
C. The left-hand tail falls and the right-hand tail rises.
D. The left-hand tail falls and the right-hand tail terminates.
14. What is the solution set of the inequality $5-|x+4| \leq-3$?
A. $-2 \leq x \leq 6$
B. $x \leq-2$ or $x \geq 6$
C. $-12 \leq x \leq 4$
D. $x \leq-12$ or $x \geq 4$
15. Solve for x : $\frac{-1}{2}|2 x+6|+2=0$
A. $x=5$ or $x=1$
B. $x=5$
C. $x=-5$ or $x=-1$
D. $x=-1$
16. If $y=f(x)$ is a $1-1$ function and $(5,1)$ is a point on its graph, which of the following statements is correct?
A. $(-5,1)$ is a point on the graph of the inverse function $y=f^{-1}(x)$.
B. $(1,5)$ is a point on the graph of the inverse function $y=f^{-1}(x)$.
C. $f(5)=f(1)$
D. the graph of the inverse function $y=f^{-1}(x)$ will be symmetric about the y-axis.
17. What is the sum of the solutions to $\frac{3}{x-2}-\frac{6}{x}=1$?
A. 1
B. -1
C. 3
D. $\frac{11}{3}$
18. An initial deposit of $\$ 2800$ is made in a savings account for which the interest is compounded continuously. The balance will triple in eight years. What is the annual rate of interest for this account?
A. 6.9%
B. 13.7%
C. 9.9%
D. None of the above.
19. If $A=\pi r^{2}$, then $\log A$ is equivalent to
A. $2(\log \pi+\log r)$
B. $\log \pi+2 \log r$
C. $\log \pi+\frac{1}{2} \log r$
D. $(\log \pi)\left(\log r^{2}\right)$
20. Given that $3^{x+2 y}=27$ and $2^{2 x+y}=8$ then $x-y$ is equal to:
A. 0
B. 2
C. 3
D. none of the above

