Name: _____

- 1. Write the division statement for $(a^4 + 4a^3 a^2 10a 6) \div (a + 3)$.
 - A. $a^4 + a^3 4a^2 + 2a 12$
 - B. $a^3 + a^2 4a + 2 + \frac{-12}{x+3}$
 - C. $a^3 + a^2 4a + 2$
 - D. $a^4 + 7a^3 + 20a^2 + 50a + 144$

4. What is the complete factorization of $4x^6 - 13x^4 + 9x^2$?

Date: _____

B. $\frac{3 \pm \sqrt{41}}{8}$

D. $\frac{4 \pm \sqrt{23}}{3}$

A. $x^2(4x^2 - 9)(x + 1)(x - 1)$

- B. $x^2(2x+3)(2x-3)(x^2-1)$
- C. $x^{2}(2x+3)(2x-3)(x+1)(x-1)$
- D. $x^{2}(2x+3)(2x+3)(x+1)(x+1)$

2. Express
$$\frac{5}{1-2i}$$
 in the form $a + bi$.
A. $-\frac{5}{3} + \frac{10i}{3}$ B. $5 + 2i$
C. $1 + 2i$ D. $5 + 10i$
5. If $4x^2 - 3x - 2 = 0$, then $x = ?$
A. $\frac{-3 \pm \sqrt{41}}{8}$ B.
C. $\frac{4 \pm \sqrt{23}}{6}$ D.

3. Simplify:
$$\frac{x-3}{x-2} + \frac{5}{x+2}$$

A.
$$\frac{x^2 + 4x - 16}{x^2 - 4}$$
 B. $\frac{x - 15}{2x}$
C. $\frac{5x - 15}{x^2 - 4}$ D. $\frac{x + 2}{x^2 - 4}$

6. If point (a, b) lies on the graph y = f(x), the graph $y = f^{-1}(x)$ must contain point

A.
$$(b, a)$$
 B. $(a, 0)$

C.
$$(0, b)$$
 D. $(-a, -b)$

- 7. The vertex of the parabola $y = x^2 + 8x + 10$ lies in Quadrant
 - A. I B. II C. III D. IV

When factored completely, $27y^3 - 64$ is equivalent

11. Which function corresponds to the ordered pairs in the table?

$ \begin{array}{c cc} -5 & -15 \\ \hline -3 & -9 \\ \hline -1 & -3 \\ \end{array} $
$ \begin{array}{c c} -3 & -9 \\ \hline -1 & -3 \end{array} $
-1 -3
2 6

A. $f(x) = -3x^2$ B. f(x) = 3xC. f(x) = -3x - 1D. $f(x) = 3x^2 - 1$

12. A polynomial, P(x), has real coefficients and also has zeros at 1, 1 + i, and 2 - i. Then this polynomial must have a degree of:

A.	at least 5	В.	exactly 3
C.	at least 6	D.	none of these

- 13. What is the end behavior of the following polynomial, $f(x) = -3x^3 + 2x 1$?
 - A. The left-hand tail rises and the right-hand tail falls.
 - B. The left-hand and right-hand tails both fall.
 - C. The left-hand tail falls and the right-hand tail rises.
 - D. The left-hand tail falls and the right-hand tail terminates.

- C. $(3y-4)(3y^2+12y+16)$
 - D. $(3y 4)(9y^2 24y + 16)$

A. $(3y - 4)(9y^2 + 12y + 16)$

B. $(3y+4)(9y^2+24y+16)$

8.

to:

9. What is the domain of the function?

$$f(x) = \frac{8}{x+3} - 2$$

- A. $(-\infty,2)U(2,\infty)$ B. $(-\infty,\infty)$
- C. $(-\infty,3)U(3,\infty)$ D. $(-\infty,-3)U(-3,\infty)$

10. Which equation has roots with the sum equal to $\frac{9}{4}$ and the product equal to $\frac{3}{4}$?

A.
$$4x^2 + 9x + 3 = 0$$
 B. $4x^2 + 9x - 3 = 0$

C.
$$4x^2 - 9x + 3 = 0$$
 D. $4x^2 - 9x - 3 = 0$

14.	What is the solution set of the inequality $5 - x + 4 \le -3$?	17. What is the sum of the solutions to $\frac{3}{x-2} - \frac{6}{x} = 1$?
	A. $-2 \le x \le 6$ B. $x \le -2$ or $x \ge 6$ C. $-12 \le x \le 4$ D. $x \le -12$ or $x \ge 4$	A. 1 B. -1 C. 3 D. $\frac{11}{3}$
15.	Solve for x: $\frac{-1}{2} 2x+6 +2=0$ A. $x = 5$ or $x = 1$ B. $x = 5$ C. $x = -5$ or $x = -1$ D. $x = -1$	 18. An initial deposit of \$2800 is made in a savings account for which the interest is compounded continuously. The balance will triple in eight years. What is the annual rate of interest for this account? A. 6.9% B. 13.7% C. 9.9% D. None of the above.
16.	 If y = f(x) is a 1-1 function and (5, 1) is a point on its graph, which of the following statements is correct? A. (-5, 1) is a point on the graph of the inverse 	19. If $A = \pi r^2$, then $\log A$ is equivalent to A. $2(\log \pi + \log r)$ B. $\log \pi + 2\log r$ C. $\log \pi + \frac{1}{2}\log r$ D. $(\log \pi)(\log r^2)$
	 function y = f⁻¹(x). B. (1, 5) is a point on the graph of the inverse function y = f⁻¹(x). 	
	 C. f(5) = f(1) D. the graph of the inverse function y = f⁻¹(x) will be symmetric about the <i>y</i>-axis. 	20. Given that $3^{x+2y} = 27$ and $2^{2x+y} = 8$ then $x - y$ is equal to: A. 0 B. 2 C. 3 D. none of the above