Name: \qquad Date: \qquad

1. In the accompanying diagram of a unit circle, the ordered pair (x, y) represents the point where the terminal side of θ intersects the unit circle. If $\theta=-\frac{\pi}{3}$, what is the value of y ?
A. $-\frac{\sqrt{3}}{2}$
B. $-\frac{\sqrt{2}}{2}$
C. $-\sqrt{3}$
D. $-\frac{1}{2}$

2. In standard position, an angle of $\frac{7 \pi}{3}$ radians has the same terminal side as an angle of
A. 60°
B. 120°
C. 240°
D. -420°
3. An object that weighs 5 pounds is suspended in a liquid. When the object is depressed 2.5 feet from its equilibrium point, it will oscillate according to the formula $\mathrm{x}=x=-2.5 \cos \left(\frac{2 \pi}{3} \theta\right)$ where t is the number of seconds after the object is released. How many seconds are in the period of oscillation?
A. $\frac{\pi}{4}$
B. π
C. 3
D. 2π
4. Find the exact value of $\sec \left(-810^{\circ}\right)$
A. 1
B. -1
C. 0
D. undefined
5. What is the value of $\tan \frac{\pi}{3}+\cos \pi$?
A. $\frac{\sqrt{3}+3}{3}$
B. $\frac{\sqrt{3}-3}{3}$
C. $\sqrt{3}-1$
D. $\sqrt{3}+1$
6. A buoy, bobbing up and down in the water as waves pass it, moves from its highest point to its lowest point and back to its highest point every 8 seconds. The distance between its highest and lowest points is 6 feet. Which equation best models the bobbing buoy?
A. $y=12 \cos \left(\frac{\pi}{4} x\right)$
B. $y=12 \cos (8 x)$
C. $y=3 \cos (8 x)$
D. $y=3 \cos \left(\frac{\pi}{4} x\right)$
7. In the accompanying diagram of a unit circle, the ordered pair $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ represents the point where the terminal side of θ intersects the unit circle.

What is $\mathrm{m} \angle \theta$?
A. 210
B. 225
C. 233
D. 240
8. An 8-foot rope is tied from the top of a pole to a stake in the ground, as shown in the diagram below.

If the rope forms a 57° angle with the ground, what is the height of the pole, to the nearest tenth of a foot?
A. 4.4
B. 6.7
C. 9.5
D. 12.3
9. A communications company is building a 30 -foot antenna to carry cell phone transmissions. As shown in the diagram below, a 50 -foot wire from the top of the antenna to the ground is used to stabilize the antenna.

Find, to the nearest degree, the measure of the angle that the wire makes with the ground.
10. What is a positive coterminal angle to -670° ?
A. -50°
B. 570°
C. 670°
D. 50°
11. Which of the following could be a reference angle of -780° ?
A. 210°
B. -330°
C. 60°
D. 30°
12. The accompanying graph represents a portion of a sound wave.

Which equation best represents this graph?
A. $y=2 \sin \frac{1}{2} x$
B. $y=\sin \frac{1}{2} x+2$
C. $y=\sin 2 x$
D. $y=\sin 2 x+2$
13. Determine the range of the function $y=2 \cos (x)+2$
A. $-2 \leq y \leq 2$
B. $1 \leq y \leq 2$
C. $-\pi \leq y \leq \pi$
D. $0 \leq y \leq 4$
14. Given the figure, if $x=4$, what is the value of w ?
A. 4
B. $4 \sqrt{3}$
C. $8 \sqrt{2}$
D. $8 \sqrt{6}$

15. Two towers are 32.2 m apart. From the top of the shorter one, the angle of elevation to the top of the other is 26.9°, while the angle of depression to the base is 78.7°. Find the sum of the tower heights to the nearest tenth of a meter.
A. $\quad 16.3 \mathrm{~m}$
B. $\quad 161.1 \mathrm{~m}$
C. $\quad 177.4 \mathrm{~m}$
D. 338.6 m
16. The number of degrees equal to $\frac{4}{9} \pi$ radians is
A. 60
B. 80
C. 130
D. 270
17. What is 235°, expressed in radian measure?
A. 235π
B. $\frac{\pi}{235}$
C. $\frac{36 \pi}{47}$
D. $\frac{47 \pi}{36}$
18. Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \| m$?
A. 2.5
B. 4.5
C. 6.25
D. 8.75
19. In the diagram, the inscribed angle $\angle A B C$ has a measure of $40^{\circ}, \overline{A B} \cong \overline{B C}$, and the radius of the circle shown is 15 units. What is the length of $\overparen{A B}$?
A. $\frac{45 \pi}{8}$
B. $\frac{70 \pi}{6}$
C. $\frac{60 \pi}{7}$
D. $\frac{64 \pi}{9}$

20. An artist takes a round manhole cover that is 36 inches in diameter and divides into 8 equal sized sections. Approximately what is the area of each section?
A. $108 \mathrm{in}^{2}$
B. $127 \mathrm{in}^{2}$
C. $139 \mathrm{in}^{2}$
D. $152 \mathrm{in}^{2}$
21. What is the solution set of the equation $\frac{x}{x-4}-\frac{1}{x+3}=\frac{28}{x^{2}-x-12}$?
A. \{ \}
B. $\{4,-6\}$
C. $\{-6\}$
D. $\{4\}$
22. Factor completely: $3 x^{2}-27$
A. $3(x-3)^{2}$
B. $3\left(x^{2}-27\right)$
C. $3(x+3)(x-3)$
D. $(3 x+3)(x-9)$
23. Consider solving $x^{2}+-5 x-20=0$ by completing the square.

$$
x^{2}+-5 x+\ldots=20+
$$

What is the number that goes in the blanks?
A. $-\frac{25}{2}$
B. $-\frac{25}{4}$
C. $\frac{5}{2}$
D. $\frac{25}{4}$
24. Solve: $5 x^{2}=4 x-3$
A. $\frac{2 \pm i}{5}$
B. $\frac{2 \pm 2 i \sqrt{11}}{5}$
C. $4 \pm \frac{2}{5} i \sqrt{11}$
D. $2+2 i \sqrt{11}$
25. Simplify: $\frac{x^{2}-5 x+6}{x^{2}-4} \div \frac{6+x-x^{2}}{x^{2}+4 x+4}$
A. 1
B. -1
C. $\frac{(x-2)^{2}}{(x-3)^{2}}$
D. $-\frac{(x-3)^{2}}{(x-2)^{2}}$

Honors Unit 7 Review 12/13/2016
1.

Answer: A
2.

Answer: A
3.

Answer: C
4.

Answer: D
5.

Answer: C
6.

Answer: A
7.

Answer: A
8.

Answer: B
9.

Answer: 37
10.

Answer: D
11.

Answer: C
12.

Answer: D
13.

Answer: D
14.

Answer: C
15.

Answer: D
Objective: G.SRT. 8
16.

Answer: B
17.

Answer: D
18.

Answer: B
19.

Answer: B
Objective: G.C. 5
20.

Answer: B
Objective: G.C. 5
21.

Answer: C
22.

Answer: C
23.

Answer: D
Objective: A.4c
24.

Answer: B
Objective: AII.4b
25.

Answer: B
Objective: A.APR. 7

