Exponential Decay: $y=a(1-r)^{t}$

$$
y=\text { final amount }
$$

$\mathrm{a}=$ initial amount
$r=$ rate (change from a percent to decimal)
t= time

Example 8: A cup of coffee contains 130 milligrams of caffeine. If caffeine is eliminated from the body at a rate of 11% per hour, how long will it take for half of this caffeine to be eliminated from a person's body?

Example 9: A computer system depreciates at an average rate of 4% per month. If the value of the computer system was originally $\$ 12,000$, in how many months is it worth \$7,350?

Exponential Growth: $y=a(1+r)^{t}$
$\mathbf{y}=$ final amount
$a=$ initial amount
r = rate (change from a percent to decimal)
t= time
Example 10: The population of a city of one million is increasing at a rate of 3% per year. If the population continues to grow at this rate, in how many years will the population have doubled?

Example 11: In 1910, the population of a city was 120,000 . Since then, the population has increased by exactly 1.5% per year. If the population continues to grow at this rate, what will the population be in 2010 ?
$\mathbf{\$ 2 , 0 0 0}$ is deposited into your account at $\mathbf{1 2 \%}$ per year, compounded continuously. How much will you have after 2 years?

You deposit $\$ 7550$ into an account that pays 7.25% interest, compounded continuously. How long will it take the money to triple?

Determine the principal that will yield $\$ 200,000$ when invested at $\mathbf{8 \%}$ compounded daily for 20 years.

A total of $\$ 12,000$ is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded
a. Quarterly:
b. Monthly:
c. Continuously:

